Agglomerative Independent Variable Group Analysis
نویسندگان
چکیده
Independent Variable Group Analysis (IVGA) is a principle for grouping dependent variables together while keeping mutually independent or weakly dependent variables in separate groups. In this paper an agglomerative method for learning a hierarchy of IVGA groupings is presented. The method resembles hierarchical clustering, but the distance measure is based on a model-based approximation of mutual information between groups of variables. The approach also allows determining optimal cutoff points for the hierarchy. The method is demonstrated to find sensible groupings of variables that ease construction of a predictive model.
منابع مشابه
MultiDendrograms: Variable-Group Agglomerative Hierarchical Clusterings
MultiDendrograms is a Java-written application that computes agglomerative hierarchical clusterings of data. Starting from a distances (or weights) matrix, MultiDendrograms is able to calculate its dendrograms using the most common agglomerative hierarchical clustering methods. The application implements a variable-group algorithm that solves the non-uniqueness problem found in the standard pai...
متن کاملSolving non-uniqueness in agglomerative hierarchical clustering using multidendrograms
In agglomerative hierarchical clustering, pair-group methods suffer from a problem of non-uniqueness when two or more distances between different clusters coincide during the amalgamation process. The traditional approach for solving this drawback has been to take any arbitrary criterion in order to break ties between distances, which results in different hierarchical classifications depending ...
متن کاملStructural Patterns in Complex Systems Using Multidendrograms
Complex systems are usually represented as an intricate set of relations between their components forming a complex graph or network. The understanding of their functioning and emergent properties are strongly related to their structural properties. The finding of structural patterns is of utmost importance to reduce the problem of understanding the structure–function relationships. Here we pro...
متن کاملInterpreting and Extending Classical Agglomerative Clustering Algorithms using a Model-Based approach
We present two results which arise from a model-based approach to hierarchical agglomerative clustering. First, we show formally that the common heuristic agglomerative clustering algorithms – Ward’s method, single-link, complete-link, and a variant of group-average – are each equivalent to a hierarchical model-based method. This interpretation gives a theoretical explanation of the empirical b...
متن کاملImage Similarity Based on Hierarchies of ICA Mixtures
This paper presents a novel algorithm to build hierarchies from independent component analyzer mixtures and its application to image similarity measure. The hierarchy algorithm composes an agglomerative (bottom-up) clustering from the estimated parameters (basis vectors and bias terms) of the ICA mixture. Merging at different levels of the hierarchy is made using the Kullback-Leibler distance b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 71 شماره
صفحات -
تاریخ انتشار 2007